The generator matrix

 1  0  0  1  1  1  X  1  1  X  1  0  0  1  1  1  0  1  1  0  1  1  0  0  1  1  0  0  X  X  X  X  X  0  X  0  1  1  0  1  1  X  1  1  0  1  1  X  1  1  0  1  1  0  X  X  1  0  X  1  X  0  0  X  X  1  1  1  1  0  1  1  1  1  1  1  1  1  0  X  1  1  X  X  0
 0  1  0  0  1 X+1  1  0  1  1 X+1  1  0  0  X X+1  1  X X+1  1  X  1  1  X  X  1  1  X  1  1  1  1  1  1  1  1  0 X+1  1  0 X+1  1  X  1  1  X  1  1  X  1  1  0 X+1  1  1  1  X  1  1  1  1  1  1  1  1  X  1  0 X+1  1  0  X  X  0  0  0  0 X+1  0  X  0  X  X  0  X
 0  0  1  1  1  0  1  X X+1 X+1  X  X  1 X+1  X X+1 X+1  0  1  1  1  X  0  1 X+1  0  X  1  1 X+1  1 X+1  1 X+1 X+1  1  0  0  0  X  X  X  X  X  X  0  0  0  1  1  X  X  X X+1  X  X X+1  1  0 X+1  X X+1  1  0  0  0  0 X+1 X+1  0  1  1  1  1  0  1  0  1  0  1 X+1 X+1  X  1  X
 0  0  0  X  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  0  X  X  X  0  X  X  X  0  0  X  X  X  0  X  0  0  0  X  X  X  0  X  X  0  0  0  X  0  0  X  0  0  X  X  0  0  X  X  0  X  0  0  0  0  X  X  X  X  0  X  X  X  0  X  0  X  0  X  0  0  X  X  X  0
 0  0  0  0  X  X  0  X  0  X  0  X  X  X  X  0  0  0  X  X  0  0  0  0  X  X  X  X  X  0  X  0  0  X  X  0  X  0  X  0  X  0  0  X  0  X  0  X  X  0  0  0  X  X  0  X  0  0  0  X  X  0  X  0  X  X  0  0  X  X  X  X  0  0  X  X  0  X  X  X  X  0  0  0  X

generates a code of length 85 over Z2[X]/(X^2) who�s minimum homogenous weight is 82.

Homogenous weight enumerator: w(x)=1x^0+81x^82+55x^84+57x^86+35x^88+17x^90+3x^92+3x^94+1x^100+2x^106+1x^116

The gray image is a linear code over GF(2) with n=170, k=8 and d=82.
This code was found by Heurico 1.16 in 0.567 seconds.